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f Theoretical Physics Institute, Department of Physics, St Francis Xavier University, 
Antigonish, Nova Scotia, Canada 

Received 25 May 1982 

Abstract. Extended series expansions are derived for the high-temperature susceptibility 
of the classical Heisenberg model, on three-dimensional lattices. Series coefficients are 
presented to twelfth order for the simple cubic isc) and face centred cubic (FCC) lattices 
and to eleventh order for the body centred cubic (BcC) lattice. Our results are in agreement 
with earlier calculations apart from a small discrepancy at the tenth order on the FCC 

lattice. In  addition, this work extends earlier series by two terms on the FCC and sc 
lattices and by one term on the BCC lattice. Extrapolation studies on the extended series 
are used to obtain revised estimates for the critical points (K,) and the susceptibility 
exponent iy). On the FCC lattice, we also investigate the possibility of a confluent 
non-analytic correction to the dominant singularity. While the coefficients are consistent 
with the presence of such a correction term with an exponent ( A l )  of 0.55, as predicted 
by renormalisation group iRG) calculations, the amplitude of the correction term appears 
to be very small compared with that of the first analytic correction term. Our estimate 
for y is in excellent agreement with RG predictions, but is somewhat lower than those of 
Ferer et a /  and Camp and Van Dyke. 

1. Introduction 

We investigate the zero field susceptibility of the three-dimensional classical Heisen- 
berg model above the critical temperature. The model has been widely studied (see 
for instance, Rushbrooke et a1 1974), and is characterised by the Hamiltonian 

The ui (i = 1, 2, 3, . . . N )  are three-dimensional classical unit vectors representing 
magnetic spins on the N sites of a three-dimensional lattice. The first sum is over all 
nearest-neighbour pairs of spins, where J denotes the interaction energy between 
such pairs. An external magnetic field H is assumed to act in the z direction. The 
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magnetic moment of a spin is denoted by m and (+f is the z component of ui. From 
(11, the partition function ZN, free energy FN and the zero field susceptibility ,yo are 
defined in the usual manner: 

ZN = Tr exp(-X/kT), FN = -kT In Z, 

Various methods have been used in deriving series expansions for the Heisenberg 
model. These include the moment and cumulant methods (Rushbrooke and Wood 
1958, Stanley 1967), the finite cluster development (Joyce and Bowers 1966) and the 
linked cluster expansion (Ferer et al 1971). More recently, the star graph expansion 
method has been used to extend the zero field free energy series on the FCC lattice 
(English ef a1 1979). The existence of a star graph expansion for the inverse susceptibil- 
ity (,yo’) of the Ising and classical n-vector models was shown by Domb (1972, 1976). 
The method has been used mainly for the Ising model (McKenzie 1975, 1980a,b). 
In this paper we generalise the procedure to the classical Heisenberg model ( n  = 3) 
and derive extended series for the zero field susceptibility on the three-dimensional 
lattices. A brief discussion of the derivation together with the new series coefficients 
is given in P 2. We quote two new terms for the FCC and simple cubic lattices and 
one new term for the BCC lattice. 

Earlier extrapolation studies on susceptibility series were based on the assumption 
of a dominant power law singularity modified by analytic correction terms. Thus 

Xo-A(t)t-YI t = 1 - T J T .  (3) 

The amplitude A ( t ) ,  being a slowly varying function of t, gives rise to weaker 
correction terms of the Darboux type (Gaunt and Guttmann 1974). Estimates for y 
based on this assumption range from 1.375 k ::E? (Ritchie and Fisher 1972) to 1.405 * 
0.02 (Ferer et a1 1971). Recent RG calculations, however, predict the existence of a 
non-analytic correction term modifying the singularity (3). This term is characterised 
by a correction-to-scaling exponent A l ,  which has the value 0.55 (Baker et a1 1978, 
Le Guillou and Zinn-Justin 1977). Studies by Camp and Van Dyke (1976) explicitly 
incorporate this correction term into the analysis and result in the estimates y = 
1.42f :::?, A I  = 0.54f 0.10 for the classical Heisenberg model. While their estimate 
for A1 is certainly consistent with RG calculations, that for y is significantly higher 
than the RG predictions of 1 .39k0.01 (Baker et a1 1978) and 1.386610.0012 (Le 
Guillou and Zinn-Justin 1977). 

In 9 3, we analyse the extended susceptibility series by standard extrapolation 
methods to obtain revised estimates for the critical temperatures and the exponent y 
for the three lattices. Analysing for the asymptotic form (3), without including the 
non-analytic term, we find that y = 1.39 f 0.01 for all three lattices. This is in excellent 
agreement with RG predictions and with earlier series estimates excepting those of 
Ferer et a1 (1971) and Camp and Van Dyke. We then proceed to incorporate the 
correction-to-scaling term by using the method of four-parameter fits (Camp and Van 
Dyke 1975, 1976). This latter analysis has been confined to the FCC lattice as the 
loose packed lattices present difficulties owing to the antiferromagnetic singularity 
(Camp and Van Dyke 1975). We find that while it is possible to fit the series coefficients 
using a correction-to-scaling term with an exponent of 0.55, the amplitude of this 
term is extremely small compared with that of the first analytic correction. The value 
of the dominant exponent ‘ y  ’ remains practically unchanged. 
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2. Derivation of series 

Following Domb (1976) and McKenzie (1980b), we develop the inverse susceptibility 
(,Y;') as a star graph expansion. For a lattice, we write 

where the sum is over all star graphs S which can be embedded on the lattice. ( S ;  2) 
denotes the weak lattice constant of S on 2 defined per site. h, (w)  is the weight or 
contribution of S to the susceptibility expansion and is a function of the variable 
w defined by 

o ( K )  =13/2(K)/11/2(K). ( 5 )  

I , ( K )  denotes the modified Bessel function of the first kind, with K = J/kT. For 
purposes of deriving series expansions, the h ,  ( U )  can be developed as power series in 
K and truncated at the required order n. The sum in (4) is then restricted to star 
graphs with up to  n edges and the expansion for ,YO' is correct to order K " .  

The weights h , (w)  are calculated recursively by applying (4) in slightly modified 
form to finite star graphs. For a finite graph with N vertices, we can write 

where the sum is over all pairs of vertices, and ( a f ~ f ) ~ = ~  represents the correlation 
between the z components of spins i and j in zero field. As shown in Domb (1972), 
these correlation terms can be very simply related to the zero field partition function 
Zo of the graph S :  constructed from S by joining vertices i and j by a pseudo edge 
with interaction K*. Thus 

The zero field partition function Zo is calculated using the procedures described in 
Domb (1976) as developed by English et a1 (1979). Having calculated xN for a star 
graph S,  one can apply (4) to calculate h , ( w )  if the weights of all the star subgraphs 
are known. In this case, (4) takes the form 

The sum is now qver all star subgraphs S' of S and (S ' ;  S )  denotes the total number 
of weak embeddings of S' on S .  By considering star graphs in the order of increasing 
cycle index, one ensures that at any stage all the weights h , ( w )  have already been 
calculated except for S' = S ,  which is obtained from (8). 

A slightly different procedure has to be adopted for inhomogeneous graphs, The 
reasons for this are discussed in detail in Domb and Hiley (1962) in the context of 
the Ising model and McKenzie (1980b) for the n -vector model. The left-hand side of 
(8) cannot be calculated by taking the reciprocal of (6). To get the correct results for 
an inhomogeneous graph, it is necessary to invert the matrix M of pair correlations 
defined as follows: 

M,, = (a:a;), M,, = 1. 19) 
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The LHS of (8) is now given by 

l T l W 1 l =  lT(f +X)-ll= lT(I -X)(I +X2)(f +X4) . . .l. (10) 

Expanding M-' to the required order is sufficient for purposes of obtaining a series 
expansion and is much less time consuming than the usual methods of matrix inversion. 

By considering all star graphs S with up to n edges. in the order of increasing 
cycle index, use of (7)-(10) yields the weights h , (w)  which, together with the lattice 
constants for the appropriate lattice, yield x i '  (K)  through (4). It is then straightfor- 
ward to derive xo(K) to the same order in K. We thus obtain 

SC: 3x0= 1+2K +3.33K2+ , . . 158.232 4883K1'+235.7599086K" 

BCC: 

FCC: 

3xo = 1 + 2.666K + 6.222K + , , ,6878.945 964K + . . . (11) 

3x0= 1 +4K + 14.666K2+ . . .246 802.5993K1'+810 503.9650K" 

+2 654 798.191K12+ . . . , 
The coefficients on the sc and BCC lattices are in agreement with earlier calculations 

(Rushbrooke et a1 1974) to tenth order. The remaining terms are new. On the FCC 
lattice, the coefficients to K 9  are in agreement with Ferer et a1 (1971). 'There is a 
very small discrepancy (in the eighth significant figure) at the next order. The 
coefficients of K" and K12 are new. 

We have incorporated various checks in our calculations to reduce the possibility 
of errors. The lattice constants have been used for a variety of other problems where 
series have been obtained by more than one method. We have also derived rules 
relating the weights of star graphs to those of higher cycle index (McKenzie 1976). 
These rules are independent of the scheme developed above. All these checks reveal 
no discrepancies and we trust that nothing of significance has been overlooked. 

3. Extrapolation studies on the extended series 

We first analyse for the dominant singularity (3) using Pad6 approximants and ratio 
methods (Gaunt and Guttmann 1974). 

Estimates for the critical point (K,) and the exponent y are obtained from the 
roots and residues of successive Pad6 approximants to the logarithmic derivatives of 
the susceptibility series for the three lattices. A sample of estimates for the sc lattice 
is given in table 1 and the 'best' estimates for all three lattices are quoted in table 4. 

Neville table sequences p T  for K,' are constructed from the ratios R,,(=u,,/u,,-~) 
of successive coefficients of the susceptibility series, using 

(12) 0 
p Y  = [npr- '  - ( a  -m)pY:;I/m, pn =Rn* 

Sequences for yn" are calculated in the same way, with 

(13) 
Thus the estimates for y are unbiased by any arbitrary choice of K, (Gaunt and Sykes 
1979). 

For the loose packed lattices (sc and BCC), we reduce the interference from the 
antiferromagnetic singularity by transforming to a variable x, given by 

1 yz = 1 + n(R,, /p, ,  - 1). 

x = 2K/(1+ K/K,). (14) 
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Table 1. sc lattice, Pad6 approximants to the logarithmic derivative. Roots (K,) and 
residues ( y ) .  

'o\" 3 4 5 6 7 8 

3 

0.684 11 
1.303 
0.692 00 
1.382 
0.692 35 
1.387 
0.692 34 
1.387 
0.691 99 
1.382 

0.692 70 
1.391 
0.691 89 
1.380 
0.692 59 
1.391 
0.692 34 
1.387 
0.692 34 
1.387 

0.692 73 0.692 19 0.692 49 0.692 27 
1.392 1.384 1.390 1.386 
0.692 25 0.692 30 0.691 81 
1.385 1.386 1.381 
0.692 32 0.692 21 
1.387 1.385 
0.692 45 
1.389 

The transformation has the effect of removing the antiferromagnetic singularity (K = 
-Kc) to infinity, leaving the ferromagnetic (K = K,) singularity unaltered. Neville 
table sequences formed from the transformed series do not show the characteristic 
odd-even oscillation (Gaunt and Guttmann 1974) and yield smooth estimates for x, 
and y. A preliminary estimate for K ,  is required to perform the transformation. This 
is obtained from the Pad6 approximants. Having made a final estimate of x,, we 
recover the value of K, by using (14). Tables of sequences for the FCC (untransformed 
series) and the sc (transformed series) lattices are presented in tables 2 and 3 while 
the 'best' estimates for all three lattices are given in table 4. 

Table 2. FCC lattice, Neville tables of sequences of K,' and y.  

m K,' Y 
n 0 1 2 3 0 1 

6 3.365 66 
7 3.340 65 3.190 61 1.329 
8 3.321 54 3.187 70 3.178 98 1.336 1.383 
9 3.306 42 3.185 47 3.177 65 3.174 99 1.342 1.388 

10 3.294 16 3.183 82 3.177 24 3.176 27 1.347 1.390 
11 3.284 02 3.182 61 3.177 15 3.176 93 1.350 1.390 
12 3.275 49 3.181 70 3.177 15 3.177 14 1.354 1.389 

Table 3. sc lattice, susceptibility series in the variable x = 2K/(1 +K/K,), with K,' = 
1.4443. Neville table sequences for x,' and y. 

-1 
x c  Y m 

n 0 1 2 0 1 

7 1.506 02 1.464 46 1.199 
8 1.500 27 1.460 U2 1.446 69 1.221 1.374 
9 1.495 43 1.456 72 1.445 20 1.239 1.388 

10 1.491 31 1.454 28 1.444 5 1 1.255 1.394 
11 1.487 78 1.452 46 1.444 28 1.267 1.396 
12 1.484 72 1.451 09 1.444 24 1.278 1.395 
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Table 4. Estimates for K ,  and y from ratio analysis and Pade approximants 

Pade approximants 
Lattice K ,  Y 

Ratio method 
Kc Y 

SC 0.6924i  0.0002 1.387 i 0.004 0.6925 i 0.0001 1.395 *0.005 
BCC 0.486%; 0.0003 1.390~t0.005 0.4868i0.0004 1.393i0.005 
FCC 0.3147*0.0002 1.381Zt0.01 0.3148*0.0001 1.390Zt 0.005 

On the basis of this analysis, we conclude that y = 1.39k0.01 is a reasonable 
estimate for all three lattices. This is in agreement with most earlier series estimates 
(Ritchie and Fisher 1972 and references cited therein) and with RG predictions (Baker 
et a1 1978, Le Guillou and Zinn-Justin 1977). It is, however, significantly lower than 
the value of 1.42?:::? obtained by Camp and Van Dyke (1976) after incorporating a 
non-analytic correction-to-scaling term. 

To investigate the presence of such correction terms, we consider a more general 
asymptotic form in place of (3). We assume 

,yo = A ( K ) (  1 - K / K J Y + B ( K ) ( l  - K/K,) - ’+  

= A I (  1 - K/K, ) -Y  + B1( 1 - K/K,)-’+” + A2( 1 - K / K J Y + ’ ,  (15) 

The term involving A ( K )  is the dominant term as in (3), and gives rise to a series of 
Darboux-type analytic terms which diverge as y ,  y - 1 and so on. The term involving 
B ( K )  represents the correction-to-scaling term, with exponent A l .  Expanding B ( K )  
in Taylor series results in a series of correction terms with amplitudes B1,  B 2  and so 
on. We truncate the sequences A,, and B, at A 2  and B 1  respectively so as to keep 
the number of parameters to be fitted to a manageable level. 

The method of four fits (Camp and Van Dyke 1975, 1976, Camp et a1 1976) was 
used to estimate the correction-to-scaling exponent A I  and the other parameters in 
(15). Three variants of the method were used and the results are presented in tables 
5 to 7. The details of the method are discussed below. The analysis was confined to 
the FCC lattice for reasons discussed in § 1. 

From (15), it can be shown that the ratios R,,(=a,/a,-l) ,  in the limit of large n ,  
behave as 

The amplitudes a and b are simply related to B2/A1 and A 2 / A 1  (Camp and Van 
Dyke 1975). For fixed choices of y and A I ,  we solve successive triplets R,, 1,,-1, 
RnP2 for a, b and K : ’ .  As can be seen from table 5 ,  best converged sequences are 
obtained for y = 1.387*0.003, Al = 0.55. We make the estimates 

K z l  = 3.1771 *0.0002, y = 1.387*0.003, a = 0.00*0.01, 

b = -0.19*0.02. (17) 

The amplitude ‘a ’ of the correction-to-scaling term is extremely small, suggesting that 
the first analytic correction term is the more important of the two. 

We next adopt a free fit procedure for A I .  Neglecting the b/n2 term in (16), we 
use successive triplets of R,  to solve for a, y and A I  for fixed choices of K,. The 
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Table5  FCC lattice. Sequences for Kc-', a and b obtained by solving (16) for various 
choices of y with A I  set to 0.55. 

y = 1.38 y = 1.39 
n K;' a b K,' a b 

7 3.18005 
8 3.17882 
9 3.177 96 

10 3.17765 
11 3.17755 
12 3.177 52 

-0.041 
-0.009 

0.019 
0.032 
0.036 
0.038 

n K,' 
y = 1.387 

a 

-0.087 3.179 12 -0.078 -0.052 
-0.145 3.178 02 -0,050 -0.103 
-0.198 3.177 26 -0.025 -0,150 
-0.223 3.177 03 -0.016 -0.168 
-0.232 3.176 99 -0.014 -0.172 
-0.237 3.177 01 -0,015 -0.170 

y = 1.40 
b KI' a b 

7 3.17940 -0.067 -0.062 3.178 19 -0.116 -0.016 
8 3.17826 -0.037 -0.116 3.17722 -0.091 -0.061 
9 3.17747 -0.012 -0.164 3.17656 -0.069 -0,102 

10 3.17722 -0.002 -0.185 3.17641 -0.063 -0,114 
11 3.177 16 0.001 -0.190 3.17643 -0.065 -0,111 
12 3.177 16 0.001 -0.190 3.17650 -0.068 -0.104 

Table6. FCC lattice. Sequences for y ,  A 1  and a obtained by ~olv ing  (16) for various 
choices of K;' with b = 0. 

K i '  = 3.175 K i '  = 3.178 
A I  a A1 a 

8 1.436 0.434 -0.165 8 1.388 0.822 -0.145 
9 1.423 0.540 -0.164 9 1.381 1.082 -0.186 

10 1.423 0.534 -0.164 10 1.379 1.231 -0.225 
11 1.430 0.474 -0.162 11 1.378 1.327 -0.259 
12 1.440 0.398 -0.161 12 1.377 1.412 -0.297 

8 1.400 0.671 -0.!45 
9 1.392 0.863 -0,166 

10 1.389 0.937 -0,179 
11 1.389 0.951 -0,182 
12 1.389 0.942 -0,180 

results for three different choices of K,  are shown in table 6. We make the estimate 

y = 1.388 * 0.002, A1 = 0.98 * 0.04, U = -0.18*0.005, 

K;' =3.1771*0.0001. (18) 
The fact that AI is so close to 1 confirms our earlier suggestion that the l / n 2  term 
dominates the l / n l + A 1  term in (16). 

Both the fitting procedures discussed above involve the R, through (16), which is 
derived using certain approximations which are true only when n is very large. To 
eliminate any errors due to this approximation, we also carry out a third procedure, 
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Table7. FCC lattice. Sequences of y ,  A i ,  A I  and E l  obtained by solving (15) with Az set to zero, for 
various choices of K , I .  

K,’ =3.176 KF’ =3.1774 
n y  A1 A1 Bi n y  A1 A I  B1 

8 1.415 0.570 0.726 0.273 8 1.396 0.692 0.785 0.233 
9 1.406 0.675 0.763 0.261 9 1.388 0.863 0.814 0.266 

10 1.404 0.699 0.769 0.262 10 1.386 0.951 0.823 0.313 
11 1.406 0.675 0.764 0.260 11 1.385 0.993 0.826 0.347 
12 1.408 0.634 0.754 0.257 12 1.384 1.017 0.828 0.373 

8 1.401 0.653 0.770 0.241 
9 1.393 0.803 0.802 0.256 

10 1.390 0.868 0.810 0.279 
11 1.390 0.885 0.812 0.288 
12 1.390 0.884 0.812 0.287 

where the series coefficients (a,) are used directly to solve for A l ,  B1, y and AI for 
various choices of K,, with A2 in (15) set to zero. Again, the free fit for A I  should 
pick out the dominant correction term whether it be analytic or non-analytic. The 
results, shown in table 7 ,  lead to the estimates 

K,’ = 3.1771 *0.0001, y = 1.388 * 0.002, A i  = 0.91 * 0.03, 

Ai = 0.815 k0.005, B1= 0.300*0.010. (19) 
Again AI is extremely close to 1, confirming the estimate from our previous analysis. 

4. Conclusions 

Extended series expansions are derived for the high-temperature, zero field susceptibil- 
ity of the classical Heisenberg model in three dimensions. The star graph expansion 
method is used and the derivation of series is discussed. New coefficients are presented 
for three lattices. 

The extended series are analysed by standard extrapolation techniques and revised 
estimates are presented for the critical point (K,) and the susceptibility exponent y. 
The estimate y = 1.39*0.01 seems to be a reasonable choice for all three lattices, 
and is in good agreement with RG calculations and most earlier series estimates. 

The method of four fits is used to investigate the presence of non-analytic correction 
terms predicted by RG calculations. We find that while a fit is possible with the 
predicted correction-to-scaling exponent A I  of 0.55, the amplitude of this term is 
extremely small compared with that of the first analytic correction. The values of K ,  
and y remain practically unchanged. 
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